#### ODA-UNESCO project:

Promotion of energy science education for sustainable development in Lao PDR

> Theme 5: Small-scale Hydropower

#### **Contents**

- Fundamentals of Hydropower
- •Why Small-scale Hydropower?
- Small-scale hydropower Potential assessment
  - ✓ Hydrological Analysis
  - ✓ Site survey

## Fundamentals of Hydropower

## Hydrological cycle



## Fundamentals of Hydropower

• Hydropower: Principle Hydro Electric Power Plant



## Fundamentals of Hydropower

**Hydropower Power Plant components** 

#### COMPONENTS OF A HYDRO SYSTEM



## Hydropower Fundamentals

#### **HP** Classification

- By installed capacity
  - >PICO <1 kW, (somewhere <5 kW)
  - MICRO: 1-100 kW (somewhere <200 kW)</p>
  - ► Mini 100-1000 kW
  - ➤ Small 1-10 MW (In Lao case: <15 MW)
  - Large or full scale: > 10 MW

## By Heads

- ▶ Low head (<15 m)</p>
- ➤ Medium Head (15–50 m)
- High head (> 50 m)

## Hydropower FUndamentals

**HP** Classification

PICO ( $\leq 1 \text{ kW}$ )







## Hydropower Fundamentals

### **HP Classification**

80kW

MICRO 6-100 kW





70kW





55 kW

# Hydropower Fundamentals HP Classification

MINI (101-1000 kW)





500 kW



#### nydropower rundamentals.

## **HP Classification**

Small (< 15MW)



#### 2 MW





## Hydropower Fundamentals: HP Classification

## <u>Full scale hydropower</u> (> 10 MW)







| Dam Name     | Country         | Installed capacity |
|--------------|-----------------|--------------------|
| Nam Ngum 1   | Laos            | 150 MW             |
| NamTheun 2   | Laos            | 1098 MW            |
| ITAIPU       | Brazil-Paraguay | 14,000 MW          |
| Three Gorges | China           | 22,000 MW          |

11:15 AM

Hydropower Fundamentals:

Run-off river scheme

→ Enlarged forebay



➤ Run-off river scheme with Enlarged forebay

# Hydropower Fundamentals HP Classification

## Supply Destination

- > stand alone or captive (with isolated mini grid)
- grid-connected: to feed power to grid network

## Hydropower Fundamentals:

## Components of Small scale-hydropower Scheme



## Advantages of Small-scale Hydropower

- ✓ Uses Renewable energy resources
- ✓ Relies on a non-polluting, indigenous and locally available source of energy
- ✓ Can replace petroleum-based generating systems
- ✓ Uses a well-proven technology, well beyond research and development stage
- ✓ environmental impacts can be kept at very low level

- Advantages to other "renewables"
  - √ High efficiency (70–90%)
  - ✓ High capacity factor 50% (PV-10%, Wind-30%) → reliable for captive systems
  - ✓ High level of predictability, varying with annual rainfalls
  - ✓ Slow rate of changes: gradually from day to day → Good correlation with demand
  - ✓ Proven, robust and long lasting equipment

## Other Advantages:

- ✓ Alternatively, SHP can be used as shaft power (mechanical works): grain mill, water pumping
- ✓Due to small size → allow involvement of local villagers during the construction phase
- √Suitable locations are widely spread → good for decentralized electrification
- Encouraged local production of parts/ equipment
- wide range of design and construction materials are available locally

## Disadvantages:

- ✓ Associated with higher capital cost (usually > 2000 US\$/kW)
- ✓ Requires a considerable amount of specialist know-how
- ✓ require a simple but continuous effort for operation and maintenance:
  - Lack of organizational capacities
  - Lack of cash

## Small scale Hydropower Fundamentals

#### Power of Falling Water

Potential energy of body of mass m (kg and elevated on h (m):

$$E = m \times g \times h$$

Gross Power produced:



h

$$P_{gross} = \frac{E}{t} = \frac{m}{t} \times g \times h_{gross} = \frac{\rho \times V}{t} \times g \times h_{gross} = Q \times \rho \times g \times h_{gross}$$

(V- falling water volume; ρ-water density)

Falling Times (t)

$$\eta_o = \frac{P_{net}}{P_{gross}}$$

 $\eta_e$ = Overall efficiency of energy conversion (%)

$$\Rightarrow P_{net} = \eta_o \times \rho \times g \times Q \times h_{gross}$$

 $(P_{net}$  - Net Output Power)

## Small-scale Hydropower: Fundamentals

#### Power of falling Water



$$\begin{split} & \eta_o = \eta_{channel} \times \eta_{penstock} \times \eta_{turbine} \times \eta_{generator} \times \eta_{transformers} \times \eta_{transmission} \\ & = 0.95 \times 0.90 \times 0.80 \times 0.85 \times 0.96 \times 0.9 \approx 0.5 \\ & P_{net} = \eta_o \times P_{gross} = \eta_o \times Q \times \rho \times g \times h_{gross} = 0.5 \times 1000 \times 9.8 \times Q \times h_{gross}, \mathbf{W_e} \end{split}$$

$$P_{output} = 5.0 \times Q \times h_{gross}, \text{ kW}_{e}$$

## Stages of SHP Potential assessment:

- 1) Desk study (or hydrology study)
  - ✓ To study on geological, hydrological and socio-economic conditions of the proposed site
  - ✓ May identify appropriate site without site visit
  - ✓ May know that there is no any potential at the proposed site, and hence no need to do site visit → save money
  - ✓ Accuracy of project costs estimation at this stage is ±30%

- 2) Reconnaissance visit: a short site visit (usually 1 day visit) to verify the desk study results:
  - Existing hydropower potential
  - ✓ Appropriate power demand
  - ✓ Site Accessibility

## 3) Pre-Feasibility Study

- ✓ to determine which of several proposed projects, sites or technical options are most attractive for SSHP development
- ✓ Preliminary assessment are reviewed and worked out with more details
- Accuracy of cost estimates: ±20-25%

## 4) Feasibility Study(FS):

- ✓ Assessment whether the implementation of the proposed scheme is desirable or not
- ✓ Project Developer will make final decision and to locate funding on the base of FS
- ✓ Accuracy of cost estimates: ±10-15%

- Hydrological data analysis (desk study)
- ✓ To estimate minimum flow
- Necessary to visit the stream during the 'smallest flow' (usually driest period)
- Involve a Hydrograph and Flow Duration Curve
- Two approaches:
  - Area-Rainfall method
  - Correlation method

- Area-Rainfall method
- Local map scale 1:50,000; better 1:20000 or 1:10000
- Necessary Statistic data/ information
  - Rainfalls
  - Hydrograph
  - Flow Duration Curve (FDC)

#### > Rainfall-area method

• Example: how to define project location on the map



#### > Rainfalls-area method

Catchment area definition



- ▶ Rainfalls Areas method
  - Rain gauge



## >Area-Rainfalls method

Calculation of rainfalls in catchment areas





#### >Area-Rainfalls method

#### Example



|       |        | Rain  |            |
|-------|--------|-------|------------|
|       | Area   | falls | Proportion |
| W     | 4.5    | 2000  | 486        |
| Υ     | 6.5    | 2700  | 949        |
| Z     | 7.5    | 3000  | 1,216      |
| total | 18.5   |       | 2,651      |
| co    | mpared | 2,633 |            |
| Ac    | curacy | 0.70% |            |



Average rainfall= 
$$\frac{\text{Area Z}}{\text{Area total}} \times z + \frac{\text{Area W}}{\text{Area total}} \times w + \frac{\text{Area Y}}{\text{Area total}} \times y$$

$$z=3000 \text{ mm/}$$

#### **Desk Study**

#### Area-Rainfalls method

#### Example



| 1 |       |          | Rain                 |            |
|---|-------|----------|----------------------|------------|
|   |       | Area     | falls                | Proportion |
|   | W     | 10       | 2000                 | 471        |
|   | Υ     | 14       | 2700                 | 889        |
|   | Z     | 18.5     | 3000                 | 1,306      |
|   | Total | 42.5     |                      | 2,666      |
|   | Com   | apred to | use <sup>2,633</sup> |            |
|   |       | <u> </u> | ccuracy              | 1.23%      |



Average rainfall= 
$$\frac{\text{Area Z}}{\text{Area total}} \times z + \frac{\text{Area W}}{\text{Area total}} \times w + \frac{\text{Area Y}}{\text{Area total}} \times y$$



## Desk Study

#### >Area-Rainfalls method

Catchment area of site A

- Size of a square
- =(4x63.36)x(4x63.36), m<sup>2</sup>
- $= 144,658 \text{ m}^2$

4 mm x 4 mm

Annual Discharge Flow Discharge (ADF)



Number of squares(A)= 21 Catchment area (A):

- = 21x144,658
- $=3.04x10^6 \text{ m}^2$

Rainfalls = 2666 mm/year

=2.666 m/year

Water volume =

Catchment area x Rainfalls

 $=3.04 \times 10^6 \times 2.666 =$ 

8.1x10<sup>6</sup> m<sup>3</sup>/year

 $ADF_A = 8.1 \times 10^6 \text{ m}^3/\text{year}$  /(365x24x60x60 s/year)

 $= 0.26 \text{ m}^3/\text{s}$ 

1:63360

Map scale 1:63360

- Area-Rainfalls method
  - Catchment area of site B



1:63360

ມາດຕາສ່ວນຂອງແຜນທີ່:1:63360

Square size

=(4x63.36)x(4x63.36), m<sup>2</sup>

 $= 144,658 \text{ m}^2$ 

4 mm x 4 mm

No. of squares (B)= 46 Area of Catchment (B):

= 46x144658

 $=6.654 \times 10^6 \text{ m}^2$ 

Rainfalls = 2666 mm/year

=2.666 m/year

Water volume =

Catchment area x Rainfalls

 $=6.654 \times 10^{6} \times 2.666$ 

= 17.74x10<sup>6</sup> m<sup>3</sup>/ਹੀ

 $ADF_B = 17.74 \times 10^6 \text{ m}^3/\text{year}$  /(365x60x60 s/year)

 $= 0.675 \,\mathrm{m}^3/\mathrm{s}$ 

## Desk Study

#### ➤ Rainfalls-Area Method: Run-off:

```
Rainfalls = 2666 mm/year=2.666 m/year Water volume = Catchment area x Rainfalls = 6.654 \times 10^6 \text{(m}^2) \times 2.666 \text{ (m/year)} = 17.74 \times 10^6 \text{ m}^3/\text{year}

ADE = 17.74 \times 10^6 \text{ m}^3/\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t
```

```
ADF_B = 17.74 \times 10^6 \text{ m}^3/ \frac{3}{3} / (365 \times 60 \times 60 \text{ s} / \frac{3}{3})
= 0.675 m<sup>3</sup>/s
```

Run-off = Annual rainfalls - Evaporation

#### Desk study

- Area-Raifall method
  - ► In case of no Rain gauge
  - ➤ But there a map with Isohyets



#### >Hydrograph and Flow duration curve

Hydrograph Mean flows)





#### > Flow Duration Curve of Nam Ou River



#### ▶FDC of Nam Lik River



#### > Flow Duration Curve characteristics



➤ Absence of Rain gauge → to use data from near by gauged sites



- E Gauged site
- B -ungauged site
- 1) To do 10-12 measurements at B at random dates

#### Absence of Gauged data

➤ Comparison of actual (measured) and found (correlated) FDC



- 2) Plot the corresponding flows on a graph of flow at E vs. flow at B
- 3) Use the FDC of the gauged site to select a flow at a specific exceedence value
- 4) Not much different in dry season

#### Example of <u>FDC</u>





#### Head Measurement



#### ·Head Measurement: water-filled clear tube and



A3 =

H=H1+H2+H3+...

#### ·Head Measurement: water-filled tube and rode



H3 = A3 - B3

B3 =

**Y4** 

#### -Head Measurement: water-filled tube with pressure

Can measure penstock length;





$$h(m) = \frac{p (kPa)}{9.8}$$

$$h(m) = 0.704 \times p \text{ (psi)}$$



## -Head Measurement: Carpenter's spirit level



#### ·Head Measurement: altimeter

- Useful for medium and high height
- Sensitive to changes of air pressure, temperature and humidity
- √ Skills needed to get high accuracy

| Forebay |       | Powerhouse |       |
|---------|-------|------------|-------|
| Reading | Time  | Reading    | Time  |
| 1000    | 10.15 | 900        | 10.20 |
| 1010    | 10.50 | 915        | 10.55 |
| 1015    | 12.00 | 930        | 12.30 |
| 1015    | 1.00  | 940        | 1.30  |



#### Head Measurement: Clinometers



$$H_1=L_1.sin(\alpha_1)$$

-Head Measurement: Sighting and Theodolites



#### Site Flow Measurement: Bucket/Oil drum method



$$m_{water} = m_{(bucket+water)} - m_{bucket}$$

Bucket: suitable for flow rate < 5 L/s 200L Oil drum: < 50 L/s

## Site Flow Measurement: Cross area & Velocity

 $\overset{\mathsf{method}}{=} A \times v_{mean}$ 

Q – Flow rate, m<sup>3</sup>/s

A – Cross-sectional area, m<sup>2</sup>

v<sub>mean</sub>- average velocity, m/s



#### Site Flow Measurement: A & V method

✓ Cross section area of a stream/river

$$A = \frac{w}{3} \left[ 4(d_1 + d_3 + \dots + d_n) + 2(d_2 + d_4 + \dots + d_{n-1}) \right]$$
n-Odd number (1,3,5,...)



#### Site Flow Measurement: A & V method

Cross section area calculation: Simple cross section



$$A = w \times d = 2.2 * 0.3 = 0.66$$
 m

#### Site Flow Measurement: A & V method

✓ Un-uniform Cross section



$$A = \frac{w}{3} \left[ 4(d_1 + d_3 + \dots + d_n) + 2(d_2 + d_3 + \dots + d_n) \right]$$

$$= \frac{w}{3} [4(d_1 + d_3) + 2(d_2)] = \frac{0.55}{3} [4 \times (0.38 + 0.21) + 2 \times (0.51)] = 0.62 \,\mathrm{m}^2$$

#### Site Flow Measurement: A & V method

 $\checkmark$  Measuring average flow velocity  $\overline{V}$ 







C=0.85- for smooth, rectangular concrete channels
C=0.75- for large, slow, clear stream
C=0.65- for small but regular stream with smooth stream bed
C=0.45- for shallow (0.5 m) turbulent flow
C=0.25- for very shallow

and rocky stream

#### Site Flow Measurement: A & V method

✓ Average velocity in a partial area

$$V_s$$
 – Velocity in a Partial area

$$\overline{\mathbf{V}} = c \times \mathbf{V}_s$$



c=0.75-Shalow stream c=0.95-deep stream

#### Site Flow Measurement: A & V method

- Propeller Flow meter can measure:
  - Partial area velocity
  - Average stream velocity





## Site Flow Measurement: A & V method

Propeller Flow meter use





#### Site Flow Measurement: A & V method

•Total Flow rate = Sum of Partial Area Flow rate

$$Q = a_1 \overline{\mathsf{V}}_1 + a_2 \overline{\mathsf{V}}_2 + \ldots + a_n \overline{\mathsf{V}}_n$$

where a1, a2,... partial areas

Example: partial area between d<sub>2</sub> and d<sub>3</sub>

$$a_3 = \frac{\left(d_2 + d_3\right)}{2} \times w$$



#### Site Flow Measurement: Weir method

Rectangular weir





## ໄຟຟ້ານ້ຳຕຶກຂະໜາດນ້ອຍ Small-scale Hydropower

## •ວັດແທກອັດຕາການໄຫຼຂອງແມ່ນໍາ (Site Flow Measurement)

> ວິທີສ້າງຝາຍກັ້ນນ້ຳ ແລະປະຕູປ່ອຍນ້ຳ ຊະນິດອື່ນໆ



ປະຕູສາມຫຼຸ່ງມ (ມຸມສາກ)

ປະຕູເປັນຮູບຄາງໝູ

- Site Flow Measurement: salt 'gulp' or salt dilution method
  - Quick measurement
  - ✓ High accuracy
  - Conductivity meter needed







# Assessment of small scale hydropower potential

## Thank You!